![]() |
» Home ![]() » Time series ![]() » State space ![]() » Bifurcation plot ![]()
|
|
LPA Simulation Examples from
Complex Population Dynamics: Theory and Data
Description:
Parameters values are estimated from the Desharnais experiment [1] using the method of maximum likelihood (ML) with environmental (log-scale) stochasticity.
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
11.68 | 0.009264 | 0.01097 | 0.01779 | 0.5129 | 0.1108 | 70 | 36 | 64 |
Stochasticity: environmental (log-scale) with variances and covariances
\(\sigma_{11}\) | \(\sigma_{12}=\sigma_{21}\) | \(\sigma_{13}=\sigma_{31}\) | \(\sigma_{22}\) | \(\sigma_{23}=\sigma_{32}\) | \(\sigma_{33}\) |
0.2771 | 0.02792 | 0.009796 | 0.4284 | −0.008150 | 0.01779 |
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Predicted transitions in dynamical behavior as \(\mu_a\) is changed using the estimated parameter values from the Desharnais experiment [1].
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
11.68 | 0.009264 | 0.01097 | 0.01779 | 0.5129 | 0.1108 | 10 | 10 | 10 |
Stochasticity: none (deterministic)
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Model predictions from a transitions experiment [2] as \(\mu_a\) is changed using the estimated parameter values from the SS genetic strain of Tribolium castaneum.
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
7.483 | 0.01200 | 0.009170 | 0.004139 | 0.2670 | 0.003620 | 250 | 5 | 100 |
Stochasticity: none (deterministic)
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Model predictions for a route-to-chaos experiment using the estimated parameter values from the RR genetic strain of Tribolium castaneum [2] and \(c_{pa}\) as the bifurcation parameter.
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
7.876 | 0.01385 | 0.01114 | 0.004348 | 0.1613 | 0.96 | 250 | 5 | 100 |
Stochasticity: none (deterministic)
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Model predictions for a route-to-chaos experiment using the estimated CLS parameter values [3] and \(c_{pa}\) as the bifurcation parameter.
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.45 | 0.01731 | 0.01310 | 0.004619 | 0.2000 | 0.007629 | 250 | 5 | 100 |
Stochasticity: none (deterministic)
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Stochastic model orbits for the route-to-chaos experiment using the estimated CLS parameter values and variance-covariance matrices [3].
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.45 | 0.01731 | 0.01310 | 0.004619 | 0.2000 | 0.007629 | 250 | 5 | 100 |
Stochasticity: demographic (square-root-scale) with variances and covariances
Group | \(\sigma_{11}\) | \(\sigma_{12}=\sigma_{21}\) | \(\sigma_{13}=\sigma_{31}\) | \(\sigma_{22}\) | \(\sigma_{23}=\sigma_{32}\) | \(\sigma_{33}\) |
Control | 1.621 | −0.1336 | −0.01339 | 0.7375 | −0.0009612 | 0.01212 |
Treatments | 2.332 | 0.007097 | 0 | 0.2374 | 0 | 0 |
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
The chaotic attractor in the route-to-chaos experiment [3] with \(c_{pa}=0.35\) and \(\mu_a = 0.96\).
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.45 | 0.01731 | 0.01310 | 0.35 | 0.2000 | 0.96 | 10 | 10 | 10 |
Stochasticity: none (deterministic)
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Lattice effects are demonstrated using the LPA model with rounding [4]. ML parameter estimates from the Hunt for Chaos experiment [3] are used.
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.67 | 0.01647 | 0.01313 | 0.35 | 0.1955 | 0.96 | 250 | 5 | 100 |
Stochasticity: demographic (log-scale) with variances and covariances
\(\sigma_{11}\) | \(\sigma_{12}=\sigma_{21}\) | \(\sigma_{13}=\sigma_{31}\) | \(\sigma_{22}\) | \(\sigma_{23}=\sigma_{32}\) | \(\sigma_{33}\) |
2.332 | 0 | 0 | 0.2374 | 0 | 0 |
Lattice effects: none and rounding
Habitat size: constant at V = 1 (20 g medium) and V = 10 (200 g medium)
Examples:
Description:
The continuous and lattice models are interpreted as mean and mode maps of the Poisson-binomial stochastic model [5].
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.67 | 0.01647 | 0.01313 | 0.35 | 0.1955 | 0.96 | 250 | 5 | 100 |
Stochasticity: deterministic and Poisson-binomial models
Lattice effects: none, floor, and Poisson-binomial
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Dynamics on the chaotic attractor are influenced by saddle cycles and lattice cycles [6]. CLS parameter estimates are from the Hunt for Chaos experiment [3].
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.45 | 0.01731 | 0.01310 | 0.35 | 0.2000 | 0.96 | varies |
Stochasticity: none (deterministic)
Lattice effects: none and rounding
Habitat size: constant at V = 1 (20 g medium)
Examples:
Description:
Simulations showing how the influence of demographic stochasticity wanes as habitat size increases [7]. ML parameter estimates are from the Hunt for Chaos experiment [3].
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
10.67 | 0.01647 | 0.01313 | 0.35 | 0.1955 | 0.96 | 250 | 5 | 100 |
Stochasticity: deterministic, Poisson-binomial, and negative binomial models
Lattice effects: none, Poisson-binomial, and negative binomial
Habitat size: constant at V = 1, 3, 10, 100 (20, 60, 200, 2000 g medium)
Examples:
Description:
Phase switching in two-cycles can be treated as stochastic jumps between two stable attractors in composite phase space [8]. Parameter estimates are from the Desharnais experiment [1].
Parameter values and initial numbers:
\(b\) | \(c_{el}\) | \(c_{ea}\) | \(c_{pa}\) | \(\mu_l\) | \(\mu_a\) | \(L_0\) | \(P_0\) | \(A_0\) |
11.68 | 0.009264 | 0.01097 | 0.01779 | 0.5129 | 0.1108 | 70 | 35 | 64 |
Stochasticity: environmental (log-scale) with variances and covariances
\(\sigma_{11}\) | \(\sigma_{12}=\sigma_{21}\) | \(\sigma_{13}=\sigma_{31}\) | \(\sigma_{22}\) | \(\sigma_{23}=\sigma_{32}\) | \(\sigma_{33}\) |
0.2771 | 0.02792 | 0.009796 | 0.4284 | −0.008150 | 0.01779 |
Lattice effects: none
Habitat size: constant at V = 1 (20 g medium)
Examples:
[1] | Dennis B, Desharnais RA, Cushing JM, Costantino RF (1995) Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecological Monographs 65:261–282. |
[2] | Dennis B, Desharnais RA, Cushing JM, Costantino RF (1997) Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. Journal of Animal Ecology 66:704–729. |
[3] | Dennis B, Desharnais RA, Cushing JM, Henson SM, Costantino RF (2001) Estimating chaos and complex dynamics in an insect population. Ecological Monographs 71:277–303. |
[4] | Henson SM, Costantino RF, Cushing JM, Desharnais RA, Dennis B, King AA (2001) Lattice effects observed in chaotic dynamics of experimental populations. Science 294:602–605. |
[5] | Henson SM, King AA, Costantino RF, Cushing JM, Dennis B, Desharnais RA (2003) Explaining and predicting patterns in stochastic population systems. Proceedings of the Royal Society of London. Series B: Biological Sciences 270:1549–1553. |
[6] | King AA, Costantino RF, Cushing JM, Henson SM, Desharnais RA, Dennis B (2004) Anatomy of a chaotic attractor: subtle model-predicted patterns revealed in population data. Proceedings of the National Academy of Sciences 101:408–413. |
[7] | Desharnais RA, Costantino RF, Cushing JM, Henson SM, Dennis B, King AA (2006) Experimental support of the scaling rule for demographic stochasticity. Ecology Letters 9:537–547. |
[8] | Henson SM, Cushing JM, Costantino RF, Dennis B, Desharnais RA (1998) Phase switching in population cycles. Proceedings of the Royal Society of London B 265:2229–2234. |